Preparation, characterisation and structures of copper(II) complexes of an asymmetric anti-cancer drug analogue †

Boujemaa Moubaraki,^{*a*} Keith S. Murray,^{*a*} John D. Ranford,^{**b*} Jagadese J. Vittal,^{*b*} **Xiaobai Wang***^b* **and Yan Xu***^c*

- *^a Chemistry Department, Monash University, Wellington Road, Clayton, Victoria 3168, Australia*
- *^b Department of Chemistry, National University of Singapore, Kent Ridge Crescent, 119260, Singapore*
- *^c Department of Chemistry, National Institute of Education, 469 Bukit Timah Road, 259756, Singapore*

Received 23rd June 1999, Accepted 27th August 1999

A series of copper (I) complexes of the anti-cancer drug analogue 1,5-bis(2-pyridylmethylene)thiocarbonohydrazide (H**2**L) was synthesized from acid solution. The single crystal structures of two asymmetric, binuclear, complexes $[\{Cu_2(HL)(H_2PO_4)_2\}^2][NO_3]_2 \cdot 2H_2O$ and $[\{Cu_2(HL)(CF_3CO_2)_3\}^2]$ and two mononuclear, monomeric complexes [Cu(H**3**L)(H**2**O)][ClO**4**]**3**2H**2**O and [Cu(H**3**L)(NO**3**)**2**]NO**3** were solved. The binuclear complexes are dimeric with three-atom anion bridges. Selective removal of one copper ion gives mononuclear monomers. The primary magnetic exchange is between copper (n) centres within a planar binuclear unit with weaker interactions *via* anion or sulfur bridges.

Since their biological activities were first reported¹ in 1946, thiosemicarbazones and their complexes have been studied intensely. Research focused on the pyridine-2-carbaldehyde thiosemicarbazone (Hpt) when anti-leukemia activity was observed in mice.² Later, it was found that the copper (II) complex was more active than the metal free ligand.**3,4** Proposed modes of action involved inhibition of DNA synthesis and oxidative phosphorylation,**³** and inactivation of tumour viruses by *N*-methylisatin-β-thiosemicarbazone.**⁵** Besides studies on biological properties, the co-ordination chemistry of these potential tridentate chelators has attracted attention. Stable model thiolato and nitrogen Lewis-base adduct complexes of $[Cu(pt)]^+$ have been isolated from aqueous solution.⁶ Crystallographic studies have revealed ternary nitrogen adduct formation,**6,7** complexation of dihydrogenphosphate⁸ and pyrophosphate⁹ and the system's remarkable ability to form complexes of both the anionic and neutral ligand.**6–11**

The ligand 1,5-bis(2-pyridylmethylene)thiocarbonohydrazide (H**2**L) can be considered as an extended, symmetrical analogue of Hpt. Although the antifungal properties of a monocopper(II) complex of H**2**L were noted,**¹²** little structural work and physical properties has been reported previously on the H₂L system. Recently we reported¹³ the asymmetric, bis-copper \overline{u} , dimeric complex [{Cu**2**(HL)(H**2**PO**4**)**2**}**2**][NO**3**]**2**2H**2**O and its variable temperature magnetic properties. One copper (II) centre is bonded to an NNS, tridentate domain, as is seen for Hpt complexes. The ligand does not symmetrically bridge the metals *via* the S, instead furnishing an NNN donor set for the other Cu^{II},

employing a deprotonated thioamide N. Owing to the ligand's potential to bind two copper (n) ions and the enhanced bioactivity of this ligand type with copper, we present detailed studies on the synthesis and characterization of a series of mono- and bi-nuclear copper (II) complexes of $H₂L$ from acid solution. Four single crystal structures, $[\{Cu_2(HL)(H_2PO_4)_2\}^2][NO_3]_2$ ² 2H**2**O, [{Cu**2**(HL)(CF**3**CO**2**)**3**}**2**], [Cu(H**3**L)(H**2**O)][ClO**4**]**3**2H**2**O and $\left[\text{Cu}(H_3L)(NO_3)_2\right]NO_3$ are presented along with spectroscopic and magnetic studies.

Experimental

Instrumentation

The electronic transmittance spectra were recorded on a Shimadzu UV-1601 UV-Vis spectrophotometer using Nujol mulls and in DMSO solution, infrared spectra on a Shimadzu IR 470 spectrophotometer as KBr disks in the range 4000–400 cm-**1** . Microanalyses were performed by the Microanalytical Laboratory at the National University of Singapore. Room temperature magnetic susceptibility measurements were carried out on a Johnson-Matthey Magnetic Susceptibility Balance with Hg[Co(SCN)**4**] as standard. Corrections for diamagnetism were made by using Pascal's constants. Molar conductance measurements were made using a Kyoto Electronics CM-115 Conductivity meter with a Kyoto Electronics conductivity cell on *ca.* 1 mM solutions. Dropping mercury electrode (DME) and hanging mercury drop electrode (HMDE) analyses were carried out on a EG&G Polarographic Analyzer, model 174A, with 0.1 M $[N(C_2H_5)_4]ClO_4$ as electrolyte in DMF at room temperature and degas time 12 min. Conditions: scan rate 5 mV s^{-1} ; current range 0.2 mA; reference electrode, Ag–AgCl; counter electrode, platinum foil; working electrode, platinum wire.

Syntheses

CAUTION: perchlorate salts are potentially explosive. The compound H₂L (recrystallized from DMF–water (1:7), yield 92%, mp 194–195 °C)¹⁴ and $\left[\text{Cu}_2\text{L}(\text{NO}_3)_2\right]$ ³ were synthesized following published procedures. All other chemicals were used as obtained.

J. Chem. Soc., *Dalton Trans*., 1999, 3573–3578 **3573**

[†] *Supplementary data available*: rotatable 3-D crystal structure diagram in CHIME format. See http://www.rsc.org/suppdata/dt/1999/3573/

Binuclear copper(II) complexes. $[Cu_2(HL)Cl_3]^2$ *2H*₂*O 1,* $[Cu_2(HL)(NO_3)][NO_3]_2$ *3 and* $[Cu_2(HL)Br_2]Br·3H_2O$ *4.* To a solution of H_2L (142 mg, 0.5 mmol) in hot ethanol (30 ml), CuCl**2**2H**2**O (171 mg, 1.00 mmol), Cu(NO**3**)**2**3H**2**O (242 mg, 1.00 mmol) or CuBr**2** (224 mg, 1.00 mmol) in hot ethanol (5 ml) was added, followed by HCl (1 M, 1.0 ml), concentrated HNO₃ (2 ml) or HBr (48%, 2.85 ml) respectively. The solution was stirred for 30 min at room temperature and filtered, the product washed with ethanol before drying *in vacuo.* Yields: **1** 244 mg (89%); **3** 221 mg (74%); **4** 299 mg (82%).

 $[Cu_2(HL)/(HSO_4)/(SO_4)]$ ^{\cdot}4H₂O 2. To a solution of H₂L (284 mg, 1.00 mmol) in hot ethanol (50 ml), CuSO**4**5H**2**O (506 mg, 2.00 mmol) in water (10 ml) was added, followed by concentrated sulfuric acid (4 ml). The solution was stirred for 30 min at room temperature. The product was filtered off and washed with water then ethanol before drying *in vacuo*. Yield: 627 mg (93%).

 $[Cu_2(HL)I_3]$ ^{\cdot}*HI* \cdot *1.5H*₂*O* **5***.* To a filtered solution of [Cu₂L-(NO**3**)**2**]3H**2**O (294 mg, 0.50 mmol) in hot water (40 ml), HI (55–58%, 5 ml) in water (10 ml) was added. The solution was stirred for 30 min at room temperature, the product filtered off and washed with water before drying *in vacuo*. Yield: 425 mg (50%) .

 \int *[Cu*₂ $(HL)F_3$ \cdot ²*HF* \cdot 3*H*₂ O 6. To a solution of H₂L (284 mg, 1.00 mmol) in hot ethanol (50 ml) in a plastic beaker, CuF**2**2H**2**O (275 mg, 2.00 mmol) in HF (40%, 1 ml) and water (5 ml) were added. The solution was stirred for 1 h at room temperature then filtered. After two months a crystalline precipitate had separated. Yield: 130 mg (23%).

[{Cu2(HL)(H2PO4)2} ²][NO3]22H2O 7. See ref. 13.

 $[Cu_2(HL)(H_2PO_4)_3]$ ² $2H_2O$ 8. The complex $[Cu_2L(NO_3)_2]$ ² 3H**2**O (294 mg, 0.50 mmol) and NaH**2**PO**4** (69 mg, 0.50 mmol) were dissolved in H₃PO₄ (2 M, 15 ml). After 10 d, a precipitate appeared which was filtered off and washed with diethyl ether. Yield: 160 mg (49%).

 $[Cu_2(HL)/(ClO_4)_2]ClO_4 \cdot 5H_2O$ 9. To a solution of H₂L (142) mg, 0.50 mmol) in hot ethanol (20 ml), $Cu(CIO₄)₂·6H₂O$ (371) mg, 1.00 mmol) in hot ethanol (5 ml) and HClO**4** (70%, 3 ml) were added. The green solution was filtered and a crystalline precipitate appeared after 2 months. Yield: 190 mg (48%).

[{Cu2(HL)(CF3CO2)3} ²] 10. To a solution of H**2**L (142 mg, 0.50 mmol) in hot ethanol (20 ml), Cu(CF**3**CO**2**)**2**2H**2**O (358 mg, 1.10 mmol) was added, followed by $CF₃CO₂H$ (98%, 0.2) ml). The solution was stirred for 30 min at room temperature. The product was filtered off and washed with water before drying *in vacuo*. Yield: 135 mg (36%). Single crystals suitable for X-ray analysis were obtained from a saturated ethyl acetate solution after one week.

Mononuclear copper(II) complexes. *[Cu(H2L)Cl2]3.5H2O 11,* \int $Cu(H_2L)Br_2$ \cdot 1.5H₂O 12 and \int $Cu(HL)$ $\langle NO_3 \rangle$ \int \cdot H₂O 13. To a solution of $H₂L$ (142 mg, 0.50 mmol) in hot ethanol (20 ml), CuCl₂·2H₂O (341 mg, 1.00 mmol), CuBr₂ (224 mg, 1.00 mmol) or $Cu(NO₃)₂·3H₂O$ (242 mg, 1.00 mmol) in ethanol (10 ml) was added respectively. The solution was stirred for 30 min at room temperature. The product was filtered off and washed with ethanol before drying *in vacuo*. Yields: **11** 253 mg (52%); **12** 440 mg (82%); **13** 331 mg (77%).

 \int *[Cu(HL)I]* \cdot *H₂O 14.* To an aqueous solution (30 ml) of $[Cu(HL)(NO₃)]⁺H₂O$ (427 mg, 1.00 mmol), KI (180 mg, 1.00 mmol) in water (5 ml) was added. The solution was stirred for 30 min at room temperature. The product was filtered off and washed with ethanol before drying *in vacuo*. Yield: 245 mg (50%)

 $[Cu(H₃L)(NO₃)₂]NO₃$ **15** and $[Cu(H₃L)(H₂O)][ClO₄]$ ² *4.5H*₂*O 16.* The complex $\left[\text{Cu}_{2}\text{L}(\text{NO}_{3})_{2}\right]$ ³H₂O (588 mg, 1.00) mmol) or $\left[\text{Cu}_2\text{L}(\text{ClO}_4)(\text{OH})\right]\cdot\text{H}_2\text{O}^+$ (535 mg, 1.00 mmol) were dissolved in hot ethanol (20 ml) with concentrated $HNO₃$ (0.2 ml) ml) or HClO**4** (70%, 0.5 ml). The solution was filtered and after a week dark green crystals suitable for X-ray diffraction analysis were obtained. Yields: **15** 125 mg (23%); **16** 140 mg (22%).

Crystallography

Crystal data and basic information about the data collection and structure refinement are listed in Table 2. Single crystals of complexes **10**, **15** and **16** were mounted and sealed in a glass capillary tube. The diffraction experiments were carried out on a Siemens Smart CCD diffractometer with a Mo-Kα sealed tube. The software SMART**¹⁵** was used for collection of data frames, indexing reflections and determination of lattice parameters, SAINT¹⁵ for integration of intensity of reflections and scaling, SADABS**¹⁶** for absorption correction and SHELXTL¹⁷ for space group and structure determination, refinements, graphics and structure reporting.

For complex **16** individual isotropic thermal parameters were refined for disordered perchlorate oxygen atoms. The positional and isotropic thermal parameters of the H atoms attached to water O atoms were refined. For 10 the F atoms of CF_3 groups in all the trifluoroacetato anions showed large thermal activity indicating the possibility of disorder. The fluorine atoms attached to C15 were refined anisotropically. Attempts to refine the anisotropic thermal parameters of the rest of the fluorine atoms were not satisfactory.

A single crystal of complex **7** was mounted and sealed in a quartz capillary. The X-ray data were collected using a Siemens P4 X-ray diffractometer with Mo-Kα radiation. The intensity data were reduced and corrected for Lorentz polarization factors. The crystal structure was solved using SHELXS 86 **¹⁸** and refined with full matrix least squares on F^2 using SHELXL 93.**¹⁸**

CCDC reference number 186/1633.

See http://www.rsc.org/suppdata/dt/1999/3573/ for crystallographic files in .cif format.

Results and discussion

The bis-copper (n) complexes of $H₂L$ prepared (Table 1) with the ligand co-ordinating as a monoanion, $\text{[Cu}_2(\text{HL})\text{]}^{3+}$, were all from acidic solution and are very stable towards concentrated mineral acids. This was also observed for the Hpt system. However, in contrast to $[Cu(Hpt)]^{2+}$ which was oxidatively decomposed by >0.33 M HNO₃ or HClO₄,^{10*a*} [Cu₂(HL)]³⁺ is stable in ca . 1 M HNO₃ or HClO₄ and yields the respective complexes of these anions, $\left[\text{Cu}_2(\text{HL})(\text{NO}_3)\right]\left[\text{NO}_3\right]_2$ **3** and $[Cu₂(HL)(ClO₄)₂]ClO₄·5H₂O$ 9. In order to bind two copper(II) ions the ligand must have the amide deprotonated. Therefore, when $CuSO_4$ and H_2SO_4 are treated with H_2L the product $[Cu₂(HL)(HSO₄)(SO₄)]·4H₂O$ 2 is formulated as having a hydrogen-sulfate ion in order to balance the charges. The exact location of the proton is not certain, however spectroscopic data are consistent with the formulation.

What is apparent is that the two copper (I_I) centres are chemically distinct, and under certain conditions one may selectively be displaced. This can be seen from the isolation of the two mononuclear monomers $\left[\text{Cu}(H_3L)(NO_3)_2\right]NO_3$ **15** and $\left[\text{Cu}(H_3L)\right]$ (H**2**O)][ClO**4**]**3**4.5H**2**O **16** (see below) which were obtained by dissolving their binuclear parents in the appropriate ethanolic mineral acid. The stability of the NNS bonded copper (II) centre is higher than the NNN site, consistent with copper's affinity for the softer S donor, and it is therefore the latter which is displaced first.

Structure descriptions

 $[\{Cu_2(HL)(H_2PO_4)_2\}]\[NO_3]_2.2H_2O$ 7. A preliminary description of complex **7** has been reported.**¹³**

 $[\{Cu_2(HL)(CF_3CO_2)\}^2]$ 10. An ORTEP¹⁹ diagram of

[‡] Preparation is identical to that for [Cu**2**L(NO**3**)**2**]3H**2**O using $Cu(CIO₄)₂·6H₂O$, as reported in ref. 13.

Table 1 Colours, analytical and magnetic data for the complexes

a Calculated values are given in parentheses. *b* At 300 K per copper(II) ion. *c* %Cl. *d* %S. *e* %Br. *f* %I. *g* %F. *h* %P. *i* %Cu. *j* Molecules of hydration vary; crystal structure shows 3 but microanalytical data indicate 5.5; %Cu, 8.1(8.5).

Fig. 1 View of the binuclear dimer $[\{Cu_2(HL)(CF_3CO_2)\}^2]$ **10**, showing the numbering scheme.

complex **10** is depicted in Fig. 1. Selected bond distances and angles are listed in Tables 3 and 4 respectively. The complex is a centrosymmetric dimer of bimetallic units, bridged by two bidentate trifluoroacetato ligands with the remaining four trifluoroacetate anions being monodentate and binding to the nonbridging metals. The copper centres are five-co-ordinate with distorted square pyramidal environments. For $Cu(2)$, HL^- furnishes an NNS tridentate equatorial donor set, with the fourth position occupied by a bridging trifluoroacetato O, Cu(2)– O(5A) 1.924(4) Å. The apical site is from another trifluoroactetato O, Cu(2)–O(6) (2.349(4) Å), with a weaker interaction due to Jahn–Teller distortions. Atom Cu(1) has an NNN donor

set from the ligand and is displaced out of the mean plane, which consists of N(2), N(1), N(4), Cu(1) by 0.029 Å towards the axial oxygen O(1). The metal associated distances about Cu(1) are *ca.* the same as for **7** whereas those for Cu(2) are all reduced for **10**, presumably a result of a stronger apical donor interaction in **10** (Cu(2)–O(11) 2.860(4), Cu(2)–S(1A) 3.242(2) Å 7; Cu(2)–O(6) 2.349(4) Å 10). It is interesting that of the two tridentate copper centres in the complex the one involved in bridging has the NNS donor set, as seen in Hpt complexes.**8,10,11** The ligand is approximately planar, and the remaining coordination and ligand parameters are nearly the same as for **7**.

The average bond lengths and angles for the $CF₃CO₂⁻$ anions agree well with those reported.²⁰ The monodentate $CF_3CO_2^$ shows two essentially equivalent $C-O$ distances $(C(14)-O(1))$ 1.240(6) and C(16)–O(3) 1.262(7) Å). The smaller than expected difference between them results from the hydrogen bond on N(3) $(O(2) \cdots N(3)$ 2.685(6) Å), which increases the delocalization effect. The two bidentate $CF₃CO₂⁻$ anions coordinate with Cu(2) and Cu(2A) to form an eight membered ring with the two C–O bonds equivalent $(1.237(6)$ and $1.229(7)$ Å) due to delocalization. The distances between $Cu(2A) \cdots$ Cu(2) and Cu(2) \cdots Cu(1) are 4.5 and 4.9 Å respectively. There is one hydrogen bonding contact from the amide N to lattice water, $N(3) \cdots O(2)$ 2.685(6) Å.

[Cu(H3L)(H2O)][ClO4]32H2O 16. An ORTEP diagram for

J. Chem. Soc., *Dalton Trans*., 1999, 3573–3578 **3575**

			10			10
	$Cu(1)-O(11)$	1.933(3)		$C(7) - N(3)$	1.353(6)	1.358(6)
	$Cu(1)-N(2)$	1.954(4)	1.958(4)	$C(7) - N(4)$	1.340(6)	1.340(6)
	$Cu(1) - N(1)$	2.053(4)	2.038(5)	$N(5) - N(4)$	1.369(5)	1.369(6)
	$Cu(1) - N(4)$	2.076(4)	2.045(4)	$C(9) - C(8)$	1.461(6)	1.458(7)
	$Cu(1)-O(21)$	2.159(3)		$C(7) - S(1)$	1.706(4)	1.715(5)
	$Cu(2)-O(1)$	1.890(3)		$P(2) - O(1)^a$	1.485(3)	
	$Cu(5)-N(5)$	1.966(3)	1.970(4)	$P(2) - O(21)$	1.501(3)	$\overbrace{}$
	Cu(2)–N(6)	2.004(4)	2.029(5)	$P(2) - O(23)$	1.544(4)	
	$Cu(2) - S(1)$	2.263(2)	2,292(2)	$P(2) - O(22)$	1.548(4)	
	$Cu(2)-O(11)$	2.860(4)		$P(1) - O(12)$	1.495(3)	
	$C(5)-C(6)$	1.461(6)	1.459(8)	$P(1) - O(11)$	1.516(3)	
	$N(2) - C(6)$	1,270(6)	1.279(7)	$P(1) - O(13)$	1.560(4)	
	$N(3) - N(2)$	1.356(5)	1.360(6)	$P(1) - O(14)$	1.564(4)	
	$Cu(1)-O(3)$		1.937(4)	$O(1) - C(14)$		1.240(6)
	$Cu(1)-O(1)$		2,220(4)	$O(2) - C(14)$		1.225(7)
	$Cu(2)-O(5)$		1.924(4)	$O(3) - C(16)$		1.262(7)
	$Cu(2)-O(6A)$	$\overline{}$	2.349(4)	$O(4) - C(16)$		1.208(8)
	$O(5) - C(18)$		1.237(6)			
"Symmetry relation: $-x + 1$, $-y + 1$, $-z + 1$.						

Table 4 Selected bond angles () for complexes **7** and **10**

7		10	
$O(11) - Cu(1) - N(1)$	95.4(2)	$N(4)$ –Cu(1)–O(3)	102.0(2)
$N(1)$ –Cu(1)– $N(2)$	78.9(2)	$O(3)$ –Cu(1)–N(1)	99.7(2)
$N(2)$ –Cu(1)– $N(4)$	77.4(2)	$O(1)$ – $Cu(1)$ – $N(2)$	101.8(2)
$N(4)$ –Cu(1)–O(11)	140.5(1)	$N(4) - Cu(1) - O(1)$	94.5(2)
$O(21) - Cu(1) - N(1)$	97.4(2)	$O(3)$ –Cu(1)–O(1)	91.6(2)
$O(21) - Cu(1) - N(2)$	104.2(2)	$N(1)$ –Cu(1)– $N(4)$	157.0(2)
$O(21) - Cu(1) - N(4)$	95.8(2)	$O(3)$ –Cu(1)–N(2)	166.5(2)
$O(21) - Cu(1) - O(11)$	95.0(1)	$O(5)^{1}$ -Cu(2)-N(6)	90.7(2)
$N(1)$ –Cu(1)– $N(4)$	155.1(1)	$N(5)-Cu(2)-N(6)$	80.5(2)
$N(2)$ –Cu(1)–O(11)	160.5(2)	$O(5)^{1}$ -Cu(2)-S(1)	103.4(2)
$O(1)$ –Cu(2)–N(6)	92.8(2)	$Cu(1)-N(1)-C(5)$	112.4(4)
$N(6)-Cu(2)-N(5)$	81.1(2)	$Cu(1)-N(2)-N(3)$	116.7(3)
$S(1)$ –Cu(2)–O(1)	100.7(1)	$Cu(1)-N(2)-C(6)$	119.0(4)
$Cu(1)-N(1)-C(5)$	112.6(3)	$C(7)-N(3)-N(2)$	114.7(4)
$Cu(1)-N(2)-N(3)$	117.2(3)	$Cu(1)-N(4)-C(7)$	113.3(3)
$Cu(1)-N(2)-C(6)$	119.6(3)	$N(5)-N(4)-C(7)$	112.1(4)
$C(7)-N(3)-N(2)$	116.0(4)	$S(1)$ –C (7) –N (4)	126.5(4)
$Cu(1)-N(4)-C(7)$	113.5(3)	$Cu(2) - N(5) - C(8)$	116.3(4)
$N(5)-N(4)-C(7)$	110.9(4)	$Cu(2)-N(5)-N(4)$	122.6(3)
$S(1)$ –C(7)–N(4)	127.4(4)	$Cu(2)-N(6)-C(9)$	112.3(3)
$Cu(2) - N(5) - C(8)$	115.8(3)	$N(5)-Cu(2)-S(1)$	84.5(1)
$Cu(2)-N(5)-N(4)$	122.4(3)	$O(5)^{1}$ -Cu(2)-N(5)	156.4(2)
$Cu(2) - N(6) - C(9)$	112.4(5)	$N(6)-Cu(2)-S(1)$	165.04(14)

Symmetry relation: $x^1 - x - 1$. $-y + 1$, $-z + 1$.

Fig. 2 View of the monomer $\text{[Cu(H₃L)(H₂O)]}\text{[ClO₄]}$ ² \cdot 2H₂O **16**, showing the numbering scheme.

complex **16** is depicted in Fig. 2. Selected bond distances and angles are listed in Tables 5 and 6 respectively. The complex crystallizes as a monometallic monomer with four tightly bonded in-plane donors around the copper atom, comprised of N(1), N(2), S(1) from the cationic ligand and a co-ordinated water, O(13). There are significantly weaker axial interactions

Fig. 3 View of [Cu(H**3**L)(H**2**O)][ClO**4**]**3**2H**2**O **16**, showing hydrogenbonding interactions.

to perchlorate ions at 2.58 (Cu–O(11)) and 2.85 Å (Cu–O(7)) giving an overall tetragonal co-ordination geometry for copper. Bonding parameters are comparable to those of **7** and **10**, and [Cu(Hpt)]^+ complexes.^{6–11} The whole ligand is planar, as seen by the biggest deviation from the copper associated least-squares plane formed by $N(2)$, $N(1)$, S, $C(1)$ – $C(7)$ being 0.10 Å. Under the acidic conditions employed the non-co-ordinated pyridine is protonated and the thioamide has not deprotonated, therefore the ligand co-ordinates as the cation H_3L^+ . In spite of this, and the reduced conjugation resulting from the pyridine being protonated, the geometry is very similar to those of [Cu(HL)]^{3+} in **7** and **10**.

Two non-bonded water molecules and three perchlorate ions occupy the space between monomers and interact weakly with them through hydrogen bonds (Fig. 3), which are $O(1SA) \cdots$ $N(4A)$ 2.720(4), $O(1B) \cdots N(3B)$ 2.896(3), $O(1B) \cdots N(6B)$ 2.948(4), and $O(1SA) \cdot O(9A)$ 2.857(4) Å.

[Cu(H3L)(NO3)2]NO3 15. An ORTEP diagram for complex **15** is depicted in Fig. 4. Selected bond distances and angles are listed in Tables 5 and 6 respectively. The complex crystallizes as a monomer with a distorted square pyramidal co-ordination sphere around the copper centre. The co-ordination mode of H_3L^+ is the same as found in 16 and bonding parameters are similar. Three of the five co-ordination sites are occupied by NNS from H_3L^+ and the other two oxygen atoms are from

^a Cu(1)–O(1). *^b* Cu(1)–O(4).

Table 6 Selected bond angles (°) for complexes 15 and 16

	15	16	
$O(1)$ –Cu(1)–N(1)	101.11(19)	97.01(2)	$O(13) - Cu(1) - N(1)$
$O(1)$ –Cu(1)–N(2)	174.47(10)	177.04(12)	$O(13) - Cu(1) - N(2)$
$O(1)$ –Cu(1)–S(1)	95.15(7)	96.43(9)	$O(13) - Cu(1) - S(1)$
$O(1)$ -Cu(1)-O(4)	85.78(11)	90.7	$O(13) - Cu(1) - O(11)$
$N(2)$ –Cu(1)– $N(1)$	80.39(8)	80.85(10)	
$S(1)$ –Cu(1)–N(1)	160.79(7)	165.78(8)	
$S(1)$ –Cu(1)–N(2)	84.40(6)	85.55(7)	
$O(4)$ –Cu(1)–N(1)	99.20(9)	84.7	$O(11) - Cu(1) - N(1)$
$O(4)$ –Cu(1)–N(2)	88.73(10)	91.1	$O(11) - Cu(1) - N(2)$
$O(4)$ –Cu(1)–S(1)	92.06(7)	99.7	$O(11) - Cu(1) - S(1)$
$O(7)$ -Cu(1)-S(1)		85.0	
$O(7)$ –Cu(1)–N(2)		70.0	
$O(7)$ –Cu(1)–N(1)		86.5	
$O(7)$ -Cu(1)-O(13)		107.9	
$O(7)$ -Cu(1)-O(11)		160.3	
$C(9)-C(8)-N(5)$	117.4(2)	117.9(3)	
$C(8)-N(5)-N(4)$	116.8(2)	116.2(2)	
$N(5)-N(4)-C(7)$	117.96(19)	118.1(2)	
$N(4)$ –C(7)– $N(3)$	118.4(2)	118.2(3)	
$C(7)-N(3)-N(2)$	115.58(19)	116.0(2)	
$N(3)-N(2)-C(6)$	122.1(2)	122.1(3)	
$N(2) - C(6) - C(1)$	114.4(2)	114.5(3)	
$N(3) - N(2) - Cu(1)$	120.05(14)	120.2(2)	
$C(7)-S(1)-Cu(1)$	95.60(8)	94.95(10)	

Fig. 4 View of the monomer $\left[\text{Cu}(H_3L)(NO_3)_2\right]NO_3$ **15**, showing the numbering scheme.

monodentate nitrato ions with the axial nitrato group weaker as expected (Cu–O(4) 2.369(3) Å).

Oxygen atoms in two of the nitrate ions $(N(8), N(9))$ are not involved in strong hydrogen bonding and are seriously disordered. Atom O(8) does form hydrogen bonds with the protonated pyridine nitrogen N(6) $(O(8) \cdots N(6) 2.740(3)$ Å), and the protonated thioamide nitrogen $N(3)$ (O(8) \cdots N(3) 2.779(3) Å).

Electrochemical studies

As the biological mechanism(s) of action for the related Hpt copper(II) complexes are related to their electrochemical properties,**⁴***^a* DME and HMDE voltammetric studies of the

Table 7 Redox potential data for selected compounds *^a*

	$E_{1/2}/V$			
Compound	$\langle 1 \rangle$	$\langle 2 \rangle$	$\langle 3 \rangle$	
H ₂ L	0.02			
Hpt	0.14			
CuCl ₂	0.07	-0.08 (sh)		
$[\{Cu(pt)(CH3CO2)\}$	0.21		-0.58	
11 $[Cu(H,L)Cl2]3·3.5H2O$	0.14	-0.10		
12 $[Cu(H2L)Br2] \cdot 1.5H2O$	0.22	-0.27		
13 [Cu(HL) $(NO3)$] \cdot H ₂ O	0.12	-0.16	-0.49	
1 [Cu ₂ (HL)Cl ₃ \cdot 2H ₂ O	0.29	-0.12	-0.29	
2 $[Cu,(HL)(HSO4)(SO4)]\cdot 4H$ ₂ O	0.18	-0.14	-0.40	
3 [Cu ₂ (HL)(NO ₃)][NO ₃] ₂	0.16	-0.14	-0.43	
4 $[Cu,(HL)Br,[Br\cdot 3H,O]$	0.18	-0.19	-0.48	
7 $[\{Cu,(HL)(H_2PO_4)_2\}_2][NO_3]_2.2H_2O$	0.29	-0.28	-0.39	
9 [Cu ₂ (HL)(ClO ₄) ₂]ClO ₄ ·5H ₂ O	0.15	-0.22	-0.40	

^{*a*} Scan rate, 5 mV s⁻¹; reference electrode, Ag-AgCl; counter electrode, platinum foil; working electrode, platinum wire: 0.1 M [NEt**4**]ClO**⁴** electrolyte in DMF at room temperature: degas time, 12 min; sh, shoulder.

complexes and the ligand were conducted. In the differential pulse polarogram of H**2**L there is only one strong peak at *ca.* 0.02 V. The dicopper (II) complexes exhibit redox processes in the range of 0.2 to -1.3 V. Results for selected compounds are given in Table 7.

The binuclear complexes exhibit three reduction processes from 0.4 to -0.6 V, as given in eqns. (1) to (3). In the first,

$$
[Cu2(HL)]3+ + e- \longrightarrow [Cu2(HL)]2+
$$
 (1)

$$
[Cu2(HL)]2+ + e^- \longrightarrow [Cu2(HL)]+ (2)
$$

$$
[Cu2(HL)]+ + n e- \longrightarrow [Cu2(HL)]1-n
$$
 (3)

 $[Cu₂(HL)]³⁺$ is reduced to form a dication, with the range of this process being between 0.29 and 0.15 V. Compared with the monocopper compounds **11**–**13**, the binuclear complexes have similar $E_{1/2}$ values at *ca.* 0.25 V, suggesting it is the Cu^{II} coordinated to sulfur which is first reduced. The second process has $E_{1/2}$ values in the range -0.22 to 0.12 V and the third from -0.29 to -0.48 V. From the cyclic voltammetry HMDE studies, the first two processes are one electron and reversible, whereas the third is quasireversible, and it is difficult to determine *n*. Extending the potential range to -1.1 V revealed two irreversible reduction processes considered as ligand centred.

It was difficult to determine all sites of reduction. The first two reductions were regarded as metal based as copper(1) complexes of $H₂L$ can be prepared, and stable copper (I) complexes of Hpt have been isolated.^{4*c*} The copper(1) complexes of H_2L are air oxidized rapidly and significant geometry changes are likely for Cu^I when compared to Cu^{II}.

Table 8 Electronic absorption and conductivity data for complexes

	Absorption bands $(nm)^a$			
Complex	Charge transfer d-d		Λ^b	
1 [Cu ₂ (HL)Cl ₃ \cdot 2H ₂ O	\mathcal{C}	490	640	35
2 [Cu ₂ (HL)(HSO ₄)(SO ₄)] \cdot 4H ₂ O	ϵ	ϵ	690	56
3 [Cu ₂ (HL)(NO ₃)][NO ₃] ₂	380	440	640	114
4 [Cu ₂ (HL)Br ₂]Br·3H ₂ O	400	479	670	55
5 [Cu ₂ (HL)I ₃] \cdot HI \cdot 1.5H ₂ O	390	560	709	117
6 [Cu ₂ (HL)F ₃] \cdot 2HF \cdot 3H ₂ O	390	470	660	9
7 $[\{Cu,(HL)(H_2PO_4)_2\}_2][NO_3]_2.2H_2O$	390	480	640	32
8 [Cu ₂ (HL)(H ₂ PO ₄) ₃] \cdot 2H ₂ O ^d	390	480	630	
9 [Cu ₂ (HL)(ClO ₄) ₂]ClO ₄ ·5H ₂ O	430	520	680	68
10 $[\{Cu,(HL)(CF,CO_2)\}$,	390	470	710	47
11 $[Cu(H,L)Cl2]\cdot 3.5H2O$	370	440	620	25
12 [Cu(H ₂ L)Br ₂] \cdot 1.5H ₂ O	360	450	640	30
13 [Cu(HL)(NO ₃)] \cdot H ₂ O	370	440	\mathcal{C}	23
14 [Cu(HL)I] \cdot H ₂ O	360	460	640	17
15 [Cu(H ₃ L)(NO ₃) ₂]NO ₃	360	430	630	112
16 $[Cu(H,L)(H,O)][ClO4]3·4.5H2O$	360	430	630	115
" Nujol mull transmittance results. $\frac{b}{v}$ In DMSO, S cm ⁻² mol ⁻¹ . "Not resolved. ^{<i>d</i>} Insoluble in DMSO.				

Electronic spectra

Mull transmittance spectra for dicopper (II) complexes exhibit two charge transfer transitions at *ca.* 390 and 470 nm which are assigned to N→Cu**II** and S→Cu**II** respectively.**²¹** Compared with dicopper complexes, the monocopper species have higher energy CT transitions, due to the decrease of delocalization as seen by the transitions at *ca.* 360–370 (N \rightarrow Cu^{II}) and *ca.* 430– 460 nm $(S \rightarrow Cu^{II})$ (Table 8). The d–d transitions for all complexes at *ca.* 640 nm indicate the copper centre geometry is $4 + 1$ distorted square pyramidal, or $4 + 2$ tetragonal as observed in the crystal structures of **7**, **10**, **15**, and **16** and related Hpt complexes of Cu**II**. **8–10**

Acknowledgements

This work was supported by grants from the National University of Singapore (RP 3970614) and the Australian Research Council (Large Grants).

References

1 G. Domagk, R. Behnisch, F. Mietzsch and H. Schmidt, *Naturwissenschaften*, 1946, **33**, 315.

- 2 R. W. Brockman, J. R. Thomson, M. J. Bell and H. E. Skipper, *Cancer Res.*, 1956, **16**, 167.
- 3 J. R. Sorenson and W. M. Willingham, *Tr. Elem. Med.*, 1986, **3**, 139.
- 4 (*a*) W. E. Antholine, P. Gunn and L. E. Hopwood, *Int. J. Radiat. Oncology Biol. Phys.*, 1981, **7**, 491; (*b*) L. A. Saryan and E. A. Petering, *J. Med. Chem.*, 1979, **22**, 1218; (*c*) E. W. Ainscough, A. M. Brodie, W. A. Denny, G. J. Finlay, J. D. Ranford and J. M. Waters, *J. Inorg. Biochem.*, 1998, **70**, 175.
- 5 W. C. Kaska, C. Carrano, J. Michalowski, J. Jackson and W. Levinson, *Bioinorg. Chem.*, 1978, **8**, 225; W. Rohde, R. Shafer, J. Idriss and W. Levinson, *J. Inorg. Biochem.*, 1979, **10**, 183.
- 6 E. W. Ainscough, A. M. Brodie, J. D. Ranford and J. M. Waters, *J. Chem. Soc.*, *Dalton Trans.*, 1991, 1737.
- 7 E. W. Ainscough, E. N. Baker, A. M. Brodie, R. J. Cresswell, J. R. Ranford and J. M. Wasters, *Inorg. Chim. Acta*, 1990, **172**, 185.
- 8 E. W. Ainscough, A. M. Brodie, J. D. Ranford and J. M. Waters, *J. Chem. Soc.*, *Dalton Trans.*, 1997, 1251.
- 9 E. W. Ainscough, A. M. Brodie, J. D. Ranford and J. M. Waters, *Inorg. Chim. Acta*, 1992, **197**, 107.
- 10 (*a*) E. W. Ainscough, A. M. Brodie, J. D. Ranford and J. M. Waters, *J. Chem. Soc.*, *Dalton Trans.*, 1991, 2125; (*b*) E. W. Ainscough, A. M. Brodie, A. Dobbs, J. D. Ranford and J. M. Waters, *Inorg. Chim. Acta*, 1995, **236**, 83; (*c*) A. G. Bingham, H. Bögge, A. Müller, E. W. Ainscough and A. M. Brodie, *J. Chem. Soc.*, *Dalton Trans.*, 1987, 493.
- 11 J. Garcia-Tojal, M. K. Urtiaga, R. Cortes, L. Lezama, M. I. Arriortua and T. Rojo, *J. Chem. Soc.*, *Dalton Trans.*, 1994, 2233.
- 12 B. G. Choi, *Yakhak Hoechi*, 1986, **30**, 79.
- 13 B. Moubaraki, K. S. Murray, J. D. Ranford, X. Wang and Y. Xu, *Chem. Commun.*, 1998, 353.
- 14 J. R. Sorenson, *Chem. Br.*, December, 1984, 1110.
- 15 *SMART & SAINT Software Reference Manuals*, Version 4.0, Siemens Energy & Automation, Inc., Analytical Instrumentation, Madison, WI, 1996.
- 16 G. M. Sheldrick, SADABS, a Software for Empirical Absorption Correction, University of Göttingen, 1996.
- 17 *SHELXTL Reference Manual*, Version 5.03, Siemens Energy & Automation, Inc., Analytical Instrumentation, Madison, WI, 1996.
- 18 SHELXL 93, by G. M. Sheldrick, University of Göttingen, 1993. 19 C. K. Johnson, ORTEP II, Report ORNL-5138, Oak Ridge
- National Laboratory, Oak Ridge, TN, 1976. 20 M. E. Noble, K. Folting, J. C. Huffman and R. H. Wentworth, *Inorg. Chem.*, 1984, **23**, 631.
- 21 H. Beraldo and L. Tosi, *Inorg. Chim. Acta*, 1983, **75**, 249.

Paper 9/05020E